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Abstract. The historic MERIS sensor onboard Envisat (2002-2012) provides valuable remote sensing data for the retrievals 

of the summer sea ice in the Arctic. MERIS data together with the data of recently launched successor OLCI onboard 

Sentinel 3A and 3B (2016 onwards) can be used to assess the long-term change of the Arctic summer sea ice. An important 10 

prerequisite to a high-quality remote sensing dataset is an accurate separation of cloudy and clear pixels to ensure lowest 

cloud contamination of the resulting product. The presence of 15 VIS and NIR spectral channels of MERIS allow high 

quality retrievals of sea ice albedo and melt pond fraction, but make cloud screening a challenge as snow, sea ice and clouds 

have similar optical features in the available spectral range of 412.5 - 900nm. 

In this paper, we present a new cloud screening method MECOSI (MERIS Cloud screening Over Sea Ice) for the retrievals 15 

of spectral albedo and melt pond fraction (MPF) from MERIS. The method utilizes all 15 MERIS channels, including the 

oxygen A absorption band. For the latter, a smile effect correction has been developed to ensure high quality screening 

throughout the whole swath. Three years of reference cloud mask from AATSR (Istomina et al., 2010) have been used to 

train the Bayesian cloud screening for the available limited MERIS spectral range. Whiteness and brightness criteria as well 

as normalized difference thresholds have been used as well. 20 

The comparison of the developed cloud mask to the operational AATSR and MODIS cloud masks shows a considerable 

improvement in the detection of clouds over snow and sea ice, with about 10% false clear detections during May-July and 

less than 5% false clear detections in the rest of the melting season. This seasonal behaviour is expected as the sea ice 

surface is generally brighter and more challenging for cloud detection in the beginning of the melting season. 

The effect of the improved cloud screening on the MPF/albedo datasets is demonstrated on both temporal and spatial scales. 25 

In the absence of cloud contamination, the time sequence of MPFs displays a greater range of values throughout the whole 

summer. The daily maps of the MPF now show spatially uniform values without cloud artefacts, which were clearly visible 

in the previous version of the dataset.  

The resulting cloud mask for the MERIS operating time, as well as the improved MPF/albedo datasets are available as swath 

data and daily means on the ftp server of the University of Bremen https://seaice.uni-bremen.de/data/meris/gridded_cldscr/. 30 
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1 Introduction 

No other surface type of satellite imagery has the unique features of bright reflecting, white snow surface. The task of snow 

detection therefore would be an easy task in the absence of clouds. However, the snow spectral signature (e.g. Warren, 1982) 

is also a feature of water and especially of ice clouds (Kokhanovsky, 2006). Possible snow impurities, snow grain size 

differences, and liquid water content create fine differences between many snow types (Warren, 1982), but in general the 5 

spectra of snow and cloud are similar in the VIS and NIR, with the difference occurring beyond 1µm (e.g. channels at 1.6, 

3.7, 11 and 12 µm).  

For MERIS data with a spectral range from 412.5nm to 900nm, cloud detection over snow and sea ice a challenging task. 

Besides cloud screening for the remote sensing retrievals using MERIS data, correct cloud detection from MERIS in the 

Arctic region may be important for synergy with the other sensors onboard ENVISAT, e.g. as an accurate cloud fraction for 10 

the hyperspectral sensor of coarser spatial resolution SCIAMACHY. 

Depending on the retrieved parameter and sensor, the effect of a compromised cloud screening may be moderate (albedo and 

grain size, SGSP, Wiebe et al., 2013) to drastic (aerosol retrieval, Istomina et al., 2011; melt pond fraction retrieval, Zege et 

al. 2015). The retrievals of MPF and albedo discussed in this work misinterpret the cloud contamination as melting sea ice 

surface which cannot be distinguished from the true melting surface and overlays the true values in the daily and weekly 15 

means. The resulting MPF and albedo datasets are thus strongly affected by the residual cloud contamination. The objective 

of this work is to resolve this issue by means of a better cloud discrimination and to provide MPF, albedo and cloud mask 

datasets of a better quality. 

1.1 Available cloud screening approaches 

Some sensors are better suited for the task of cloud screening but are not suitable for the given retrieval due to other 20 

limitations. E.g. the MODIS cloud mask (Ackermann et al., 1998; Liu et al., 2004) is one of the most comprehensive 

classification algorithms, however, as the MODIS sensor experiences saturation in some of the visible bands (Madhavan et 

al., 2012), it is impossible to use these data for the given sea ice albedo and melt pond fraction retrieval (Zege et al., 2015). 

As the MERIS sensor onboard ENVISAT does not have these limitations, it has been chosen for the retrievals of MPF and 

albedo. MERIS is located on the same platform as AATSR and SCIAMACHY, contains an Oxygen A band, and provides 25 

total Arctic coverage every three days with its swath width of 1150km. Synergy of AATSR and MERIS is used in this work 

to train and test the developed cloud screening routine. 

Three basic cloud screening approaches applicable to a spectroradiometer data can be distinguished among the available 

algorithms:  

- Analysis of time-sequences of data, under the assumption that the short-term changes of the scene can be only introduced 30 

by clouds (e.g. Key and Barry, 1989; Diner et al., 1999; Lyapustin et al., 2008; Lyapustin and Wang, 2009; Gafurov and 

Bárdossy, 2009). Such an approach assumes surfaces with a constant and pronounced structure (Lyapustin et al., 2008; 
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Lyapustin and Wang, 2009). Although the approach proved to be effective for various natural and artificial surfaces, it is not 

applicable within this work due to the fast-evolving nature of melt ponds and the sea ice. 

- Applying a reflectance or brightness temperature absolute threshold or their combination, e.g. ratio of reflectances in the 

form of NDVI. In this case, only a few channels are used (e.g. Minnis et al., 2001; Bréon and Colzy, 1999; Lotz et al., 2009; 

Allen et al., 1990; Spangenberg et al., 2001; Trepte et al., 2001). The optical properties of snow in the VIS show weak 5 

spectral dependency. In the NIR and IR, however, the snow spectrum shows the typical “snow signature”, i.e. values 

decreasing due to water absorption in the NIR, which also causes the dependence on the snow grain size due to different 

pathlength and absorption in the grains of different size. These features aid the snow-cloud discrimination. Therefore, it is a 

common practice to use IR channels in addition to VIS for such retrievals (Spangenberg et al., 2001). In the current task, the 

limited spectral range of MERIS does not allow effective usage of this approach.  10 

- Image processing and spatial variability analysis (e.g. Martins et al, 2002). In the case of white clouds over white surface, 

the spatial variability would mainly come from the difference in grain/particle size, surface roughness, different water phase 

(ice surface vs water cloud, melting surface vs ice cloud), and cloud shadows. Given the great natural variability of these 

parameters in both Arctic clouds and surface and the similarity of their optical properties in the given spectral range, this 

approach is prone to false detections. 15 

Combinations of the above methods together with additional thresholds and additional meteorological/reanalysis data are 

also available. E.g. the MODIS cloud detection scheme (Ackerman et al., 1998; Liu et al., 2004) is one of the most 

comprehensive among the available cloud detection schemes and is based on such combination. This algorithm uses 19 out 

of 36 MODIS channels along with additional inputs, e.g. topography and illumination observation geometry for each 1-km 

pixel, land /water mask, ecosystem maps, and daily operational snow/ice products (taken from the NOAA and National snow 20 

and Ice Data Center). The resulting MODIS cloud mask contains 4 confidence levels (confident cloudy, uncertain, probably 

clear, confident clear) and is available as a separate daily averaged product. Unfortunately, due to the time lag between 

ENVISAT and Terra/Aqua, MODIS cloud mask product cannot be used for swathwise screening for the melt ponds fraction 

retrieval. 

Most of the cloud screening approaches do not focus on the case of the snow surface; among those who do (Allen et al., 25 

1990; Spangenberg et al., 2001; Trepte et al., 2001; Istomina et al., 2010; Istomina et al., 2011), even smaller fraction utilizes 

MERIS sensor for this task (Kokhanovsky et al., 2009, Schlundt et al., 2011, Zege et al., 2015, Istomina et al., 2015, Krijger 

et al, 2011). 

2 Cloud screening for MERIS 

The goal of the current work is to produce a reliable cloud screening method for MERIS data over the Arctic sea ice in 30 

summer. The currently available cloud masks for MERIS (Zege et al., 2015, Schlundt et al., 2011, etc.) are based on the 
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normalized indices like NDSI (Normalized Difference Snow Index) and MDSI (MERIS Differential Snow Index). In the 

absence of IR channels these thresholds will result in a residual cloud contamination over snow and sea ice.  

However, the historic MERIS data can be collocated with the AATSR data in the center part of the MERIS swath. This 

AATSR data have IR channels (1.6, 3.7, 11 and 12 µm) and they can be used for training and validation of the developed 

MERIS cloud mask. In this work, we use the AATSR cloud screening developed for the aerosol retrieval over snow and ice 5 

(Istomina et al., 2010). This method is based on dynamic thresholds in VIS, NIR and TIR channels which discriminate snow 

and ice signature from all other surfaces, and from clouds.  

Unlike most of the moderate resolving spectroradiometers, MERIS has the so-called oxygen A Band (MERIS channel 11 at 

761.5 nm). This band can also be used to aid the cloud screening over snow and ice. 

2.1 Oxygen A Band and the smile effect 10 

As oxygen is well mixed in the Earth atmosphere, the amplitude of the absorption within MERIS channel 11 reflects optical 

path length of light rays received with the sensor. This band is therefore useful for cloud screening: effective path length 

over clouds is shorter than that over sea ice or snow on land, that is, light over higher clouds experiences less absorption 

when travelling through the atmosphere than light reflected from the surface. This allows separating reflecting objects such 

as clouds and snow/sea ice surface according to their height in the atmospheric column.  15 

This approach has been used by Zege et al., (2015), and Istomina et al., (2015) as an additional threshold to classical 

whiteness and brightness criteria. For the additional threshold, the ratio of bands 10 (oxygen A reference) and 11 (oxygen A 

absorption) has been used R11/R10<0.27. To identify the cloud free pixels, we detect pixels where the oxygen absorbs light 

within the whole atmosphere column as opposed to cloudy pixels where the absorption occurs only within the small fraction 

of the atmosphere column, namely, above the cloud.  20 

However, as MERIS is a push-broom sensor, its channels are susceptible to the usual for this type of sensors smile effect. 

The smile effect appears as characteristic along track stripes in the satellite image. It is caused by shifts of the central 

wavelengths of the detector's pixels. The channel 11 of MERIS λ=761.5 nm lies within the oxygen absorption band, where a 

slight shift in wavelength may cause drastic effect on the signal measured by the sensor. As seen in Zege et al., 2015 and 

Istomina et al., 2015, the channel 11 is virtually impossible to use effectively due to strong artifact presence. 25 

Available smile effect corrections comprise those included into the ESA toolbox for ENVISAT processing, i.e. open source 

packages BEAM or SNAP (https://www.brockmann-consult.de). These corrections work well within the transparency 

window of the atmosphere over darker surfaces. A set of corrections produced especially for bright Arctic surface and the 

oxygen A band are based on the simulation of the atmospheric transmittances with a radiative transfer forward model for 

each given pixel with its own wavelength (Jäger, 2013). This correction gives considerable improvement on the absolute 30 

values of the measured reflectances but does not entirely remove the stripes along the swath, which hinders the usage of this 

correction for the cloud screening. 
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In this work, we suggest a smile correction for MERIS band 11 which allows slight inaccuracy on the absolute value of the 

TOA reflectances but preserves the relative difference between the sensor pixels, which allows a quantitative use of the 

corrected oxygen A band for cloud screening (Section 3.3.1). 

3 Methods  

The cloud screening method for MERIS data developed in this work is specifically aimed to work well over summer sea ice. 5 

It is called MECOSI (MERIS Cloud screening Over Sea Ice). Currently it is being applied as preprocessing for the retrieval 

of melt pond fraction and spectral albedo of summer sea ice (Melt Pond Detector, MPD). The MPD retrieval takes top-of-

atmosphere reflectances of MERIS at 9 channels as input and employs a forward model of optical properties of the Arctic 

surface and an iterative procedure to retrieve spectral albedo and melt pond fraction of a given pixel. Several hundred field 

spectra of the Arctic sea ice and melt ponds have been used to constraint the input parameters of the forward model and to 10 

ensure realistic range of modeled surfaces. More details on the MPD retrieval can be found in Zege et al. (2015). The 

presented cloud screening method can be used for other remote sensing applications as well, e.g. for retrievals of other 

surface or atmospheric parameters or as a cloud mask for coarser resolving sensors onboard same satellite platform (e.g. 

SCHIAMACHY on Envisat).  

3.1 Data used  15 

Input for MECOSI are MERIS Level 1B observations. MERIS consists of five cameras scanning the surface of the Earth in 

push-broom mode and offers 15 spectral bands from 412.5 nm to 900 nm. The data is collected globally with a spatial 

resolution of 1040×1200m at nadir. The Level 1B product provides calibrated and georeferenced top of atmosphere (TOA) 

radiances. These are preprocessed using the software package BEAM (www.brockmann-consult.de/cms/web/beam/).  

The preprocessing includes:  20 

1. The region north of 65◦N is cut out from each orbit using the module Subset. 

2. The metadata in the L1B swaths is given in a grid with reduced resolution and needs to be interpolated in order to 

have the data available for each pixel. This is done using the BandMath module. The coordinates as well as sun 

zenith and the view zenith angles are now interpolated. 

3. The TOA radiances are corrected and converted to reflectances using the module Meris.CorrectRadiometry. The 25 

correction includes an equalization step to reduce detector-to-detector differences and a scheme to reduce the smile-

effect in all but the absorption Bands 11 and 15. 

A cloud mask derived from AATSR data is used as a reference mask to develop and validate the MECOSI algorithm. The 

AATSR instrument has been launched together with MERIS aboard ENVISAT and both sensors observe the same scene 

nearly simultaneously. However, AATSR has a narrower swath of 512 km and covers only the central half of a MERIS 30 

swath. The AATSR cloud screening algorithm has been developed for an aerosol optical thickness retrieval and is presented 
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by Istomina et al. (2010). It exploits knowledge about the spectral shape of snow in visible, near infrared and thermal 

infrared bands of AATSR. The output is a binary mask for cloud free snow and ice. Validation against a number of 

independent datasets has proven the reliability of the algorithm in the Arctic region (Istomina et al., 2010). The training 

dataset used in this work was prepared as follows: all AATSR swaths from May to September 2009, 2010 and 2011 have 

been subset, transformed into TOA, and co-located to the corresponding MERIS swaths using a nearest neighbour algorithm. 5 

To avoid influence of collocation errors and subpixel cloud fraction at the borders between clouds and clear sky we exclude a 

two-pixel border. These pixels are not used to develop or to validate the algorithm.  

This AATSR dataset from May to September 2009 – 2011 was used to estimate the cloudy and clear case probabilities for 

given feature vector as described in the next Sections. 

3.2 Bayesian cloud screening  10 

A comprehensive introduction to the theory of Bayesian cloud screening is given by Hollstein et al. (2015). The described 

approach can be found in detail in (Marks, 2015). In the following, P(A,B) denotes the occurrence probability of A under the 

condition of the occurrence of B and F is a vector of features derived pixel-wise from satellite data. and if C denotes cloudy 

conditions (C̅ – clear conditions), the probability to see a cloudy pixel under the occurrence of F can be written as: 

P (C, 𝐅) =
P (𝐅,C)·P (C)

P (𝐅,C)·P (C)+P (𝐅,C̅)·P (C̅)
 ,          (1) 15 

using this equation to calculate the cloud probability P (C, 𝐅)  we need to estimate the probabilities P (𝐅, C) and P (𝐅, C̅)  for 

each possible feature vector 𝐅 ∈ 𝑅𝑁 . We accomplish this by calculating N-dimensional frequency histograms, one for cloud 

and one for clear sky cases as flagged in the AATSR mask. This is done for every AATSR and MERIS swath for the time 

period 01.05.2009 to 30.09.2009. The background probability P (C) is directly calculated from the AATSR masks using data 

from the same year. Pixels outside the AATSR swath are not used in this analysis. The set of features for which the above 20 

procedure is being performed is described below. 

3.3 Features and applied corrections  

The selection of the features used to build the feature vector F is the most important step during the development of the al-

gorithm and greatly affects the performance of the screening. Hollstein et al. (2015) used a random search algorithm to find a 

set of features Fi that performs best in global application. Here, however, the features are selected manually to find a set that 25 

performs best over snow-covered ice and darker, ponded ice. Additionally, correction algorithms were developed to equalize 

the systematic dependencies on the cross-track pixel position.  
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3.3.1 Oxygen-A ratio  

The TOA ratio of the O2A Band 11, which is located at the oxygen absorption line at 761 nm, to Band 10 at 754 nm, which 

is the oxygen reference band, allows to estimate the absorption by oxygen in the atmospheric column above reflecting 

surface: 

rox =
R11

R10
 ,            (2) 5 

As oxygen is uniformly distributed in the atmosphere, the oxygen absorption depends on the pathlength that the photons 

have traveled on the way from the sun to the sensor, so the ratio (2) can be used to estimate the height in the atmosphere at 

which the photon reflection has happened. As clouds are higher than snow and sea ice, we expect to see a decreased 

absorption in cloud cases. We expect this criterion to work best for optically thick water clouds. The sensitivity to optically 

thin clouds is expected to be small over bright surfaces like sea ice (Preusker and Lindstrot, 2009), and clouds with a low top 10 

height would also have a weaker effect on rox.  

The ratio rox  cannot be used directly in the feature vector F because of dependencies to the illumination-observation 

geometry, directional dependence of the surface optical properties (snow and sea ice BRDF), and sensor specific properties 

(the smile effect). The length of the optical path through the atmosphere depends on sun and view zenith in both cloudy and 

clear cases. As these angles are provided in MERIS Level 1B swath data, the air mass factor can be calculated (e.g. Gómez-15 

Chova et al. (2007)). However, rox is strongly affected by the smile effect, which occurs due to a small variation in the 

central wavelength across the MERIS swath. The smile effect of MERIS has been well studied (Bourg et al., 2008) and 

possible ways to use this information to correct rox have been shown by Gómez-Chova et al. (2007) or Jäger (2013). The 

approach by Jäger (2013) greatly improves the usability of rox, but does not fully remove detector-to-detector differences. A 

reason for this might be instrument stray light, which is not fully removed in the MERIS operational processing chain 20 

(Lindstrot et al., 2010), and that was not taken into account by Jäger (2013).  

In this work, we propose an empirical approach to equalize rox and decrease the influence of the above-mentioned factors 

across the swath. We assume that over a statistically significant sample, the mean value of rox for a given set of conditions 

(e.g., for a given detector index, geometry, etc.) can be used to correct the systematic across-track dependence for this set of 

conditions. We assume that rox depends on three parameters: The detector index Id which corresponds to the position of 25 

the pixel in the detector array, the reflectance at 779 nm R12 and the sun zenith angle Θs. Id gives a pixel’s position in the 

sensor array and allows to compensate for the spectral smile effect. The dependence on R12 is assumed to correct the 

influence of surface albedo and instrument stray light. It was preferred over R10 to avoid a direct dependence on rox. The sun 

zenith angle Θs allows estimating the downside length of the optical path. To fully account for the acquisition geometry, the 

view zenith angle Θv would be also required. However, we do not include Θv here to keep the number of dependencies as 30 

small as possible. Instead, we use Id as a proxy for Θv because Θv does not change significantly for a given detector index in 

the Arctic region. So, we obtain a set of data vectors: 
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𝑀 = {(𝑟𝑜𝑥 , 𝜃𝑠, 𝐼𝑑  )𝑖}, 𝑖 ∈ 𝐼           (3) 

The set I denotes the indices of all pixels in one swath. Pixels with the same detector index Id are selected from the set M and 

corresponding subsets are built: 

𝑀𝑗 = {(𝑟𝑜𝑥 , 𝜃𝑠, 𝐼𝑑)  ∈ 𝑀 | 𝐼𝑑 = 𝑗}          (4) 

These subsets 𝑀𝑗  are then processed separately. The ratio is binned as follows: 5 

𝑅𝜃
𝑗

= {𝑟𝑜𝑥|(𝑟𝑜𝑥 , 𝜃𝑠, 𝐼𝑑)  ∈ 𝑀𝑗 , 𝜃 ≤ 𝜃𝑠 < 𝜃 + 𝛿}        (5) 

 

The bin width δ is set to 1/4 degree. The sets 𝑅𝜃
𝑗

 are calculated for many swaths K, typically all summer data of one year. 

Then the mean value of 𝑟𝑜𝑥  is calculated for each one of these sets: 

𝑟̅𝜃
𝑗

= mean{𝑟𝑜𝑥|𝑟𝑜𝑥  ∈  ⋃ (𝑅𝜃
𝑗

)𝑘
𝐾
𝑘 }          (6) 10 

Finally, a 5th order polynomial is fitted to the averaged values for each separate detector index j to achieve smooth and 

continuous correction functions 𝑓𝑗: 

𝑓𝑗 = fit {𝑟̅𝜃
𝑗
},            (7) 

which in addition are functions of the solar zenith angle 𝜃𝑠 . The correction is applied pixelwise by evaluating f and 

subtracting the resulting value from the O2-A ratio. The corrected ratio is then used as a feature in the cloud screening 15 

algorithm.  

It must be noted that as the further calculation of cloud probabilities for the given detector indices and values of 𝑟𝑜𝑥  happens 

in the space of corrected 𝑟𝑜𝑥  only, the absolute amplitude of 𝑟𝑜𝑥  is not important for our application and is not preserved 

within the described approach. Instead, the relative difference between the scattering events at the surface and at the cloud 

are equalized throughout the swath and thus made available for cloud screening. 20 

The above described approach has been performed over all MERIS swathes subset to above 65°N for the time range from 

01.05.2009 to 30.09.2009. This sample is considered to be a statistically significant in terms of variety of surface and cloud 

types and their seasonal behavior under a variety of observation-illumination geometries for all detector indices.  

3.3.2 MERIS differential snow index  

The MERIS Differential Snow Index (MDSI) is defined as normalized difference of the TOA reflectances at 865 nm and 885 25 

nm: 

Fsi =
R13−R14

R13+R14
 ,            (8) 
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It exploits the drop in spectral reflectance of snow and ice at the given wavelengths to aid discrimination of snow and ice 

from clouds (Schlundt et al., 2011). The systematic cross-track variation is less pronounced than that for the O2 -A ratio and 

no dependence on the observational geometry is expected, i.e. it is assumed to be the same for both spectral bands R13 and 

R14. Therefore, we use a simplified correction scheme: the mean value of Fsi is calculated for each detector index using 

swaths from the summer 2009. Clear sky pixels that show open water are excluded during this step. As before, to remove the 5 

systematic across-track variability, the obtained mean values are subtracted from Fsi for each detector index.  

3.3.3 Brightness and whiteness  

Many types of clouds have a higher reflectance than snow in the NIR and they usually show a white spectrum. The 

usefulness of these two features to detect clouds has been shown in Gómez-Chova et al. (2007) and the same definitions are 

used here. The brightness b is a spectral integral over the reflectance and is calculated by numerical integration of the 10 

measured TOA reflectance: 

 b =
1

λmax−λmin
∑

ri+1+ri

2iϵI (λi+1 − λi) ,         (9) 

Here, λ denotes the center wavelength of a MERIS band and I is the set of used bands. The absorption bands 11 and 15 are 

excluded from the calculation, hence, we use I = [1, 14] \{11} to calculate the overall brightness b. The whiteness w of the 

spectrum is measured by the deviation of the radiances from the brightness b. With 𝑒𝑖 = |𝑟𝑖 − 𝑏|, the equation is  15 

w =
1

λmax−λmin
∑

ei+1+ei

2iϵI (λi+1 − λi) ,         (10) 

Note that small values for w correspond to a flat and therefore white spectrum.  

3.4 Evaluation  

The cloud probabilities for each given set of features (Section 3.2) were compiled into binary masks in order to compare the 

results to the binary AATSR cloud masks. The masks are created by applying a threshold tp ∈ [0,1] to the cloud probability 20 

P(F,C) followed by one iteration of morphological closing and opening to remove isolated pixels in clear sky and cloud 

covered areas. Invalid pixel and clear sky open water pixel are tracked during the morphological operations to avoid an 

enlarged land or open water mask. 

The binary MECOSI and AATSR cloud masks are the used to filter out clouds in the MPD swath data. No co-location or 

interpolation is necessary for this step because both algorithms, the MECOSI cloud screening and MPD, process identical 25 

MERIS swaths, and the AATSR cloud masks were gridded to the MERIS grid. The comparison of the three cloud masks, as 

well as illustration of separate features of the feature vector F as well as their corrections, is given in the next section. 
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4 Results  

4.1 O2A correction  

An example of the influence of the O2A correction described in Section 3.3.1 is presented in Figure 1. The jumps at the 

transition between the five detectors of MERIS, visible as vertical stripes in the uncorrected ratio (Fig. 1b), are strongly 

reduced by applying the correction (Fig. 1c). The influence of low sun elevation, which causes the dark top left corner in the 5 

uncorrected ratio, is much less apparent. Also, there are no pronounced artifacts introduced by the discrete look up table 

(Section 3.3.1) used for the correction, as the corrected ratio is a rather smooth image. Very bright pixels, e.g. cloud edges 

visible in Figure 1a, are darker and more apparent after applying the correction. 

Another way to investigate the effect of the correction is to study the along-track mean of the O2A ratio. As expected, the 

corrected ratio is a smooth function with values close to zero, if data from the whole period May to September is considered 10 

(Fig. 2 black line). This is different for the data from May only, where we find small jumps between the detectors (Fig. 2 red 

line). Moreover, there is a negative slope in the along-track mean, which implies that pixels at the right side of the swath 

tend to be darker than the ones on the left side. For the data of July, we find a reverse sign situation (Fig. 2, blue line). This 

seasonal dependence is expected due to the illumination-observation geometry change in the course of summer; however, 

these artifacts are minimal and still allow a high-quality cloud detection using the oxygen A MERIS band.  15 

4.2 Comparison to AATSR cloud mask  

We first investigate whether the MECOSI algorithm can reproduce the AATSR cloud mask for the year 2009 used for the 

algorithm training. As AATSR data contains also TIR bands, in which the snow and ice surface is virtually a black body, the 

cloud detection with AATSR shows good reliability in the Arctic (Istomina et al., 2010) and can be used as a reference in 

this study. Figures 3 and 4 show two examples of the MECOSI cloud probability, one for the typical situation at the 20 

beginning of the melt season in May with bright, snow covered ice (Fig. 3) and one for darker, ponded ice at the peak of the 

melt season in July (Fig. 4). In both cases, the cloud probability (Fig. 3b and Fig. 4b) corresponds to the AATSR mask (Fig. 

3c and Fig. 4c). Most clouds visible in the TOA reflectance images (Fig. 3a and Fig. 4a) are prominent with significantly 

higher cloud probabilities. No distinct difference in cloud probability is visible across the swath and dependencies to the 

acquisition geometry or detector specific properties appear to be well compensated. However, closer inspection reveals 25 

several cases of false negatives, like e.g. the semi-transparent clouds over landfast ice which cannot be discriminated from 

clear sky regions by their cloud probability (red arrow in Fig. 3a). The opposite case is shown with a blue arrow Fig. 3a, 

where low ice concentrations close to the coast were falsely detected as high cloud probability.  

To quantify the performance of the algorithm, we study the distribution of cloud probability for clear sky and cloud covered 

pixels in the AATSR mask (Fig. 5). For cloud covered pixels, we find that nearly 85% percent show a cloud probability 30 

greater than the background probability P(C)=0.86 and the distribution drops sharply towards smaller cloud probabilities 

(Fig. 5 top). Visual inspection shows that probabilities smaller than P(C) are almost always correlated to semi-transparent 
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cloud over snow covered ice or optically thin clouds. The distribution for clear sky pixels is less distinct (Fig. 5 bottom). It 

drops towards higher cloud probabilities, which is expected, but 6% percent show a cloud probability higher than P (C) and 

cannot be reliably discriminated from clouds. The majority of these 6% is the challenging case of bright, snow covered sea 

ice during the beginning of the melt season and fresh snow during fall freeze-up, hence such incorrectly high cloud 

probability is rarely found for darker ice with melt ponds on top. Most of these false positives are connected to cloud-like 5 

values of the MDSI feature Fsi, which may potentially occur for fresh snow with fine grains. The extremely high albedo of 

such surface will compromise the 𝑟𝑜𝑥  feature and prevent correct detection. 

We compare the MECOSI binary mask to the AATSR reference mask to study the temporal behavior of the algorithm’s 

performance and to investigate the accuracy of the binary mask. By comparing all swaths from May to September 2009, we 

find that, with reference to the AATSR cloud mask, 92.51% of the MERIS pixels are classified correctly and the remaining 10 

7.49% split up to 4.64% missed cloud and 2.85% missed clear sky pixels. The temporal behavior of the detection rates is 

presented in Figure 6. The algorithm works best in July, with detections rates around 0.9 for both clear sky and cloud pixels, 

and the performance is only slightly worse in June. However, we find a considerably worse detection rate for clear sky 

regions in May, August and September with values close to 0.6 and below. This indicates that more than 40% of the pixels 

marked as clear sky in the AATSR mask are falsely screened out in the MECOSI binary mask. The detection rate for cloud 15 

steadily increases during June and July up to almost 1.0 at the end of the melt season. This increase is due to the state of ice 

surface, which gets darker over time and makes the detection of semi-transparent cloud easier.  

The binary cloud mask derived from MECOSI cloud probability is compared to independent AATSR mask from two other 

years. By comparing over 3.8 × 109 pixels from 2010 and 2011, we find that 90.50% (90.65% for 2011) of the pixels are 

correctly classified, which is about 2% less than for 2009. Thereby 5.85% (5.92%) are missed cloud and 3.64% (3.42%) are 20 

wrongly screened out clear sky pixels.  

4.3 Extension beyond AATSR swath and comparison to MODIS cloud fraction  

The accuracy of the MECOSI algorithm outside of the center half of the swath is difficult to assess because of the lack of 

appropriate reference data. Visual inspection of MERIS images from 2009 to 2011, which have been superimposed with the 

binary cloud mask, gives the general impression that the accuracy is considerably good throughout the full swath. The 25 

several cases of semi-transparent clouds in May and early June 2010 are more frequently missed in the upper right quarter of 

the swath. The reason for this is somewhat small values in the corrected oxygen A ratio; a tendency towards smaller values 

on the right side of the swath is also observable in May 2009 (Fig. 2). The along-track mean of cloud probability for the year 

2010 also gives slightly smaller values at the right side of the swath, as Figure 7 shows, and the standard deviation σ 

increases. However, the differences across the swath are small (±0.017 for the mean and ±0.02 for σ) and are mainly linked 30 

to different characteristics of the five detectors of MERIS, as the jumps at the transitions and the linear behaviour for the 

center detectors show.  
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To further investigate the performance outside of the AATSR swath as well as the overall accuracy, we compare MECOSI 

binary cloud mask, gridded to a one-degree constant angle grid, to MODIS cloud fraction (Ackermann et al., 2008) data 

from May to Septmeber 2010. Thereby, we use either the full MERIS swath, center half or the outside quarters (Figure 8a,b 

and c, respectively). We find a good agreement with the MODIS data in all three cases. If the full MERIS swath is used (Fig. 

8a), the comparison of over 6.7 × 105 grid cells gives a RMSD = 0.18 and a difference of means D = -0.02, which indicates 5 

that the MECOSI algorithm tends to retrieve slightly higher cloud fraction. The numbers for the central part of the swath 

(Fig. 8b) are very similar, with RMSD = 0.19 and D = -0.03, but the number of grid cells N = 5.0 × 105 is smaller because of 

the restricted spatial coverage. For the outside quarters, we find again almost equal parameters with RMSD = 0.19, D = -0.01 

and N = 4.6 × 105, although a slight pixel displacement is seen (compare top left and bottom right corner of Fig. 8b and 8c).  

4.4 Influence on the melt pond fraction retrieval  10 

Finally, we study the influence of different cloud masking schemes on the retrieved MPF. Figure 9 shows an example of 

using the original cloud screening built into the MPD algorithm, as well as the effect of additionally applying the MECOSI 

and AATSR cloud masks. It is evident that both the MECOSI and the AATSR cloud mask (Fig. 9b and c) are much more 

restrictive than the MPD cloud masking scheme (Fig. 9a). The spatial coverage is significantly reduced and regions which 

are not screened out correspond well to a MODIS cloud fraction below 50% (Fig. 9d). Differences between using the 15 

MECOSI and the AATSR cloud mask are mostly due to the limited spatial coverage of AATSR (e.g. the larger pole hole).  

A time series of the Arctic-wide mean MPF for all three cloud masking schemes is presented in Figure 10. The spatial 

coverage has been restricted to the area seen by AATSR. 

 For all three years 2009 to 2011, we find evident differences between the original MPD product and the two improved 

products with additional cloud masking. The most prominent one is the significantly higher (up to 0.08 increase) mean MPF 20 

in July when additional cloud screening is applied. In May and September, however, the additional screening results in 

slightly smaller mean MPF. This behavior is expected because as the MPD algorithm retrieves values of around 0.15 MPF 

for opaque clouds, so that immense cloud contamination in the original MPD product reduces the MPF value range of the 

timerseries towards this wrong MPF value.  

If we focus on the differences between AATSR and MECOSI cloud mask (dark red and blue in Fig. 10), we find that both 25 

masks lead to a similar MPF timeseries. Using the MECOSI mask results in slightly higher MPF in May, which is possibly 

caused by some omitted clouds. The main advantage of the MECOSI cloud mask over AATSR is the larger spatial coverage 

of the latter (compare Fig. 9b and 9c).  

5 Discussion  

The results show that the MECOSI algorithm discriminates clouds from summer sea ice with good accuracy. With MECOSI, 30 

over 90% of the pixels are classified correctly, when compared to the AATSR reference.  
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Comparison to the independent MODIS daily cloud fractions shows good agreement with the developed MECOSI mask both 

in the center part of the MERIS swath where AATSR data are available for training, and on the outside edge of the swath 

(Fig. 8). There is no evidence that the quality of the algorithm performance worsens towards the edges of the swath. The 

variation of mean cloud probability and its standard deviation across the swath is dominated by detector-to-detector 

differences and shows no change towards the edges of the swath (Fig. 7). Therefore, we conclude that the results of the 5 

comparison to AATSR cloud mask are, in general, valid for the full MERIS swath.  

The quality of the MECOSI cloud mask for both clear and cloudy cases is the best in June and July, when the rapid melt 

onset and first pond drainage events happen on the Arctic sea ice (Fig. 6). Bright fresh snow compromise MECOSI cloud 

screening and lead to some false detections in May. The O2A ratio is well suited for improving the detection over fresh snow. 

The proposed correction scheme equalizes the ratio reasonably well (compare Figs. 1b and 1c). However, the detector-to-10 

detector artifacts indicate some residual influences of the spectral smile effect, surface albedo and instrument stray light 

which were not fully removed also by the proposed correction scheme. 

The cloud detection rates at the end of the melting season in August/September are close to 100%. The not as good detection 

of clear cases might be connected to the reduced number of such scenes at the end of melting season, as humidity and 

cloudiness increase, and the ice cover decreases with the minimum ice extent typically in the first weeks of September. For 15 

our specific application, i.e. retrieving surface parameters, it is important to screen out possibly all clouds as they bias the 

retrieval result. Wrong detections of clear cases as cloudy are less critical as this just reduces the spatial coverage of the 

product but does not affect the retrieved values. 

Consequently, the MECOSI cloud screening improves the quality of the MPD MPF and albedo product. By reducing the 

amount of cloud contamination, we find consistently higher pond fraction in the period Mid-June to Mid-August for all three 20 

years (Fig. 10). The cloud contaminated pixels are no longer used as input into the MPD retrieval and the resulting MPF 

dataset contains unbiased MPF and albedo values. The so improved resulting dataset can be used for further applications, 

such as assimilation into or validation of climate and melt pond models.  

6 Summary  

In this work, we present MECOSI, a new cloud screening routine for MERIS specifically developed for use over Arctic 25 

summer sea ice. Comparison to the independent MODIS cloud mask shows that the available summer Arctic MPF and 

spectral sea ice albedo product from MERIS (Zege et al., 2015; Istomina et al., 2015) are significantly cloud contaminated 

(compare Figs. 9a and 9d). The cloud screening method presented here has been developed to improve the quality of the 

MPF and albedo datasets. 

The developed cloud masking routine utilizes all 15 MERIS channels and a reference AATSR cloud mask to calculate 30 

probabilities of cloudy and clear cases for a given set of features:  

- Oxygen A absorption and reference ratio (additionally corrected for smile effect), 
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- MERIS normalized difference snow index, 

- brightness and whiteness criteria. 

The dependencies on the illumination-observation geometry and the position of the pixel in the array of detectors, i.e. the 

detector index, have been accounted for as well. To calculate the cloudy and clear probabilities, a dataset of every AATSR 

and MERIS swath from 01.05.2009 to 30.09.2009 have been used to ensure a representative sample of the sea ice, snow and 5 

cloud conditions. 

The developed cloud mask shows a considerable improvement over the old MPD cloud mask. The quality of cloud detection 

of the new algorithm is close to the reference AATSR cloud mask, whereas MERIS does not have the IR channels which aid 

in the snow-cloud discrimination. The MECOSI cloud detection quality remains high also near the edges of the MERIS 

swath where no AATSR training data were available. Comparison to the reference AATSR and independent MODIS cloud 10 

masks shows that the application of MECOSI has greatly increased the quality of the MPD products on both spatial (Fig. 9) 

and temporal (Fig. 10) scales. 

The advantage of MECOSI over e.g. MODIS daily cloud fraction product is that it enables accurate cloud screening of swath 

MERIS data over snow and sea ice, which was not possible with the old version of the cloud screening used in the MPD 

retrieval. 15 

The developed cloud mask for MERIS over the summer Arctic sea ice, as well as the improved datasets of the melt pond 

fraction and spectral albedo for the entire MERIS operation time are available at the ftp server of the University of Bremen 

https://seaice.uni-bremen.de/data/meris/gridded_cldscr/. 
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Figure 1: Reflectance at 779 nm (a), uncorrected O2A ratio (b) and corrected O2A ratio used as a feature in the cloud screening (c). 

Shown is a 2450 × 1121 pixel part of ENVISAT orbit 37475 from 1st of May 2009 with the New Siberian Islands at the bottom and 5 
parts of the Canadian Archipelago at the top. Land, open water and invalid pixels are white. 

 

 

Figure 2: Along-track mean of the corrected O2A ratio. For each time period, the mean is calculated from 100 randomly selected 

swaths. The vertical lines mark the transition between the five detectors of MERIS. 10 
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Figure 3: Reflectance at 779 nm (a), cloud probability (b) and corresponding AATSR mask (c) for 14th of May 2009 with Svalbard 

at the bottom left corner. Land, open water and invalid pixels are white. The red arrow points to missed clouds and the blue one 

marks wrongly screened out clear sky pixels (orbit number 37666). 
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Figure 4: Reflectance at 779 nm (a), cloud probability (b) and corresponding AATSR mask (c) for 31st of July 2009 (orbit number 

38778). The blue arrow marks a region with wrongly screened out clear sky pixels, although a thin cloud cover is possible. 10 
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Figure 5: Distribution of MECOSI cloud probability for AATSR cloud pixels (top) and AATSR clear sky pixels (bottom) for May 

to September 2009. 

 

 5 

Figure 6: Time series of daily mean classification rates for 2009. As an example, a value of 0.9 for cloud means that 90% of the 

cloud pixels in the AATSR mask are correctly classified as cloud covered and the remaining 10% are missed clouds. 

 

Figure 7: Along-track mean and standard deviation of cloud probability for 2010. Vertical lines mark the transition between the 

five detectors of MERIS. 10 
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Figure 8: Comparison of daily gridded MECOSI and MODIS cloud fraction using the full MERIS swath (a), the center half (b) or 

the outside quarters (c) for the gridded MECOSI fraction. Period is May to September 2010.  

 

 5 

Figure 9: Gridded melt pond fraction with MPD cloud mask (a), MECOSI cloud mask (b), AATSR cloud mask (c) and MODIS 

daytime mean cloud fraction (d), 20th of June 2009.  
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Figure 10. Influence of different cloud mask on Arctic-wide mean melt pond fraction for 2009 – 2011. The means are calculated 

from gridded melt pond fraction data and coverage is restricted to the area seen by AATSR. Days with less than 100 grid cells to 

compare or missing AATSR data are excluded.  
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